Principal components' features of mid-latitude geomagnetic daily variation

Author:

De Michelis P.,Tozzi R.,Consolini G.

Abstract

Abstract. The ionospheric and magnetospheric current systems are responsible of the daily magnetic field changes. Recently, the Natural Orthogonal Components (NOC) technique has been applied to model the physical system responsible of the daily variation of the geomagnetic field, efficiently and accurately (Xu and Kamide, 2004). Indeed, this approach guarantees that the number of parameters used to represent the physical process is small as much as possible, and consequently process control for such system becomes apparent. We focus our present study on the analysis of the hourly means of the magnetic elements H, D and Z recorded at L'Aquila observatory in Italy from 1993 to 2004. We apply to this dataset the NOC technique to reconstruct the 3-dimensional structures of the different ionospheric and magnetospheric current systems which contribute to the geomagnetic daily variations. To support our interpretation in terms of the different ionospheric and magnetospheric current systems, the spectral and statistical features of the time-dependent amplitudes associated to the set of natural orthogonal components are analyzed and compared to those of a set of descriptors of the magnetospheric dynamics and solar wind changes.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3