Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics

Author:

Pal S.,Behrendt A.,Wulfmeyer V.

Abstract

Abstract. We applied a ground-based vertically-pointing aerosol lidar to investigate the evolution of the instantaneous atmospheric boundary layer depth, its growth rate, associated entrainment processes, and turbulence characteristics. We used lidar measurements with range resolution of 3 m and time resolution of up to 0.033 s obtained in the course of a sunny day (26 June 2004) over an urban valley (central Stuttgart, 48°47' N, 9°12' E, 240 m above sea level). The lidar system uses a wavelength of 1064 nm and has a power-aperture product of 2.1 W m2. Three techniques are examined for determining the instantaneous convective boundary layer (CBL) depth from the high-resolution lidar measurements: the logarithm gradient method, the inflection point method, and the Haar wavelet transform method. The Haar wavelet-based approach is found to be the most robust technique for the automated detection of the CBL depth. Two different regimes of the CBL are discussed in detail: a quasi-stationary CBL in the afternoon and a CBL with rapid growth during morning transition in the presence of dust layers atop. Two different growth rates were found: 3–5 m/min for the growing CBL in the morning and 0.5–2 m/min during the quasi-steady regime. The mean entrainment zone thickness for the quasi-steady CBL was found to be ~75 m while the CBL top during the entire day varied between 0.7 km and 2.3 km. A fast Fourier-transform-based spectral analysis of the instantaneous CBL depth time series gave a spectral exponent value of 1.50±0.04, confirming non-stationary CBL behavior in the morning while for the other regime a value of 1.00±0.06 was obtained indicating a quasi-stationary state of the CBL. Assuming that the spatio-temporal variation of the particle backscatter cross-section of the aerosols in the scattering volume is due to number density fluctuations (negligible hygroscopic growth), the particle backscatter coefficient profiles can be used to investigate boundary layer turbulence since the aerosols act as tracers. We demonstrate that with our lidar measurements, vertical profiles of variance, skewness, and kurtosis of the fluctuations of the particle backscatter coefficient can be determined. The variance spectra at different altitudes inside the quasi-steady CBL showed an f−5/3 dependency. The integral scale varied from 40 to 90 s (depending on height), which was significantly larger than the temporal resolution of the lidar data. Thus, the major part of the inertial subrange was detected and turbulent fluctuations could be resolved. For the quasi-stationary case, negative values of skewness were found inside the CBL while positive values were observed in the entrainment zone near the top of the CBL. For the case of the rapidly growing CBL, the skewness profile showed both positive and negative values even inside the CBL.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3