Abstract
Abstract. On the basis of the spontaneous fast reconnection model, three-dimensional magnetic field profiles associated with a large-scale plasmoid propagating along the antiparallel magnetic fields are studied in the general sheared current sheet system. The plasmoid is generated ahead of the fast reconnection jet as a result of distinct compression of the magnetized plasma. Inside the plasmoid, the sheared (east-west) field component has the peak value at the plasmoid center located at x=XC, where the north-south field component changes its sign. The plasmoid center corresponds to the so-called contact discontinuity that bounds the reconnected field lines in x<XC and the field lines without reconnection in x>XC. Hence, contray to the conventional prediction, the reconnected sheared field lines in x<XC are not spiral or helical, since they cannot be topologically connected to the field lines in x>XC. It is demonstrated that the resulting profiles of magnetic field components inside the plasmoid are, in principle, consistent with satellite observations. In the ambient magnetic field region outside the plasmoid too, the magnetic field profiles are in good agreement with the well-known observations of traveling compression regions (TCRs).
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献