Observations of the auroral width spectrum at kilometre-scale size

Author:

Partamies N.,Syrjäsuo M.,Donovan E.,Connors M.,Charrois D.,Knudsen D.,Kryzanowsky Z.

Abstract

Abstract. This study examines auroral colour camera data from the Canadian Dense Array Imaging SYstem (DAISY). The Dense Array consists of three imagers with different narrow (compared to all-sky view) field-of-view optics. The main scientific motivation arises from an earlier study by Knudsen et al. (2001) who used All-Sky Imager (ASI) combined with even earlier TV camera observations (Maggs and Davis, 1968) to suggest that there is a gap in the distribution of auroral arc widths at around 1 km. With DAISY observations we are able to show that the gap is an instrument artifact and due to limited spatial resolution and coverage of commonly used instrumentation, namely ASIs and TV cameras. If the auroral scale size spectrum is indeed continuous, the mechanisms forming these structures should be able to produce all of the different scale sizes. So far, such a single process has not been proposed in the literature and very few models are designed to interact with each other even though the range of their favourable conditions do overlap. All scale-sizes should be considered in the future studies of auroral forms and electron acceleration regions, both in observational and theoretical approaches.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alfvén Waves and Aurora at Earth and Jupiter: Comparative Analysis;Geophysical Monograph Series;2024-04-12

2. Statistical Characteristics of Multi‐Scale Auroral Arc Width Based on Machine Learning;Journal of Geophysical Research: Space Physics;2024-01

3. Ionospheric plasma structuring in relation to auroral particle precipitation;Journal of Space Weather and Space Climate;2023

4. Auroral geospace;Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace;2022

5. The Properties of ICEBEAR E‐Region Coherent Radar Echoes in the Presence of Near Infrared Auroral Emissions, as Measured by the Swarm‐E Fast Auroral Imager;Journal of Geophysical Research: Space Physics;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3