Abstract
Abstract. Spatial mapping is one of the most useful methods to display information about the seismic parameters of a certain area. As in b-value time series, there is a certain arbitrariness regarding the function selected as smoothing kernel (which plays the same role as the window size in time series). We propose a new method for the calculation of the smoothing kernel as well as its parameters. Instead of using the spatial cell-event distance we study the distance between events (event-event distance) in order to calculate the smoothing function, as this distance distribution gives information about the event distribution and the seismic sources. We examine three different scenarios: two shallow seismicity settings and one deep seismicity catalog. The first one, Italy, allows calibration and showcasing of the method. The other two catalogs: the Lorca region (Spain) and Vrancea County (Romania) are examples of different function fits and data treatment. For these two scenarios, the prior to earthquake and after earthquake b-value maps depict tectonic stress changes related to the seismic settings (stress relief in Lorca and stress build-up zone shifting in Vrancea). This technique could enable operational earthquake forecasting (OEF) and tectonic source profiling given enough data in the time span considered.
Funder
Horizon 2020
Ministerio de Ciencia e Innovación
Subject
General Earth and Planetary Sciences
Reference50 articles.
1. Aki, K.: Maximum likelihood estimate of b in the formula log N = a-bM and its confidence limits, Bull. Earthq. Res. Inst., 43, 237–239, 1965. a, b
2. Alarcón, E. and Benito, B.: Foreword special issue Lorca's earthquake, B. Earthq. Eng., 12, 1827–1829, https://doi.org/10.1007/s10518-014-9602-4, 2014. a
3. Batte, A. G. and Rümpker, G.: Spatial mapping of b-value heterogeneity beneath the Rwenzori region, Albertine rift: Evidence of magmatic intrusions, J. Volcanol. Geoth. Res., 381, 238–245, https://doi.org/10.1016/j.jvolgeores.2019.05.015, 2019. a
4. Brunsdon, C., Fotheringham, A., and Charlton, M.: Geographically Weighted Summary Statistics—A Framework for Localised Exploratory Data Analysis, Comput. Environ. Urban, 26, 501–524, https://doi.org/10.1016/S0198-9715(01)00009-6, 2002. a
5. Carreño-Herrero, E. and Valero-Zornoza, J. F.: The Iberian Peninsula seismicity for the instrumental period: 1985–2011, Enseñ. Cienc. Tierra, 19, 289–295, 2011. a