Bare-earth DEM generation from ArcticDEM and its use in flood simulation

Author:

Liu YinxueORCID,Bates Paul D.ORCID,Neal Jeffery C.ORCID

Abstract

Abstract. In urban areas, topography data without above-ground objects are typically preferred in wide-area flood simulation but are not yet available for many locations globally. High-resolution satellite photogrammetric DEMs, like ArcticDEM, are now emerging and could prove extremely useful for global urban flood modelling; however, approaches to generate bare-earth DEMs from them have not yet been fully investigated. In this paper, we test the use of two morphological filters (simple morphological filter – SMRF – and progressive morphological filter – PMF) to remove surface artefacts from ArcticDEM using the city of Helsinki (192 km2) as a case study. The optimal filter is selected and used to generate a bare-earth version of ArcticDEM. Using a lidar digital terrain model (DTM) as a benchmark, the elevation error and flooding simulation performance for a pluvial scenario were then evaluated at 2 and 10 m spatial resolution, respectively. The SMRF was found to be more effective at removing artefacts than PMF over a broad parameter range. For the optimal ArcticDEM-SMRF the elevation RMSE was reduced by up to 70 % over the uncorrected DEM, achieving a final value of 1.02 m. The simulated water depth error was reduced to 0.3 m, which is comparable to typical model errors using lidar DTM data. This paper indicates that the SMRF can be directly applied to generate a bare-earth version of ArcticDEM in urban environments, although caution should be exercised for areas with densely packed buildings or vegetation. The results imply that where lidar DTMs do not exist, widely available high-resolution satellite photogrammetric DEMs could be used instead.

Funder

China Scholarship Council

Natural Environment Research Council

University of Bristol

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3