A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis

Author:

Mohr SusannaORCID,Ehret UweORCID,Kunz MichaelORCID,Ludwig PatrickORCID,Caldas-Alvarez AlbertoORCID,Daniell James E.ORCID,Ehmele FlorianORCID,Feldmann HendrikORCID,Franca Mário J.ORCID,Gattke Christian,Hundhausen MarieORCID,Knippertz PeterORCID,Küpfer KatharinaORCID,Mühr Bernhard,Pinto Joaquim G.ORCID,Quinting JulianORCID,Schäfer Andreas M.ORCID,Scheibel Marc,Seidel Frank,Wisotzky ChristinaORCID

Abstract

Abstract. The July 2021 flood in central Europe was one of the five costliest disasters in Europe in the last half century, with an estimated total damage of EUR 32 billion. The aim of this study is to analyze and assess the flood within an interdisciplinary approach along its entire process chain: the synoptic setting of the atmospheric pressure fields, the processes causing the high rainfall totals, the extraordinary streamflows and water levels in the affected catchments, the hydro-morphological effects, and the impacts on infrastructure and society. In addition, we address the question of what measures are possible to generate added value to early response management in the immediate aftermath of a disaster. The superposition of several factors resulted in widespread extreme precipitation totals and water levels well beyond a 100-year event: slow propagation of the low pressure system Bernd, convection embedded in a mesoscale precipitation field, unusually moist air masses associated with a significant positive anomaly in sea surface temperature over the Baltic Sea, wet soils, and steep terrain in the affected catchments. Various hydro-morphodynamic processes as well as changes in valley morphology observed during the event exacerbated the impact of the flood. Relevant effects included, among many others, the occurrence of extreme landscape erosion, rapidly evolving erosion and scour processes in the channel network and urban space, recruitment of debris from the natural and urban landscape, and deposition and clogging of bottlenecks in the channel network with eventual collapse. The estimation of inundation areas as well as the derived damage assessments were carried out during or directly after the flood and show the potential of near-real-time forensic disaster analyses for crisis management, emergency personnel on-site, and the provision of relief supplies. This study is part one of a two-paper series. The second part (Ludwig et al., 2022) puts the July 2021 flood into a historical context and into the context of climate change.

Funder

Helmholtz Association

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

AXA Research Fund

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference105 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3