Towards improving the spatial testability of aftershock forecast models

Author:

Khawaja Asim M.ORCID,Maleki Asayesh Behnam,Hainzl SebastianORCID,Schorlemmer Danijel

Abstract

Abstract. Aftershock forecast models are usually provided on a uniform spatial grid, and the receiver operating characteristic (ROC) curve is often employed for evaluation, drawing a binary comparison of earthquake occurrences or non-occurrence for each grid cell. However, synthetic tests show flaws in using the ROC for aftershock forecast ranking. We suggest a twofold improvement in the testing strategy. First, we propose to replace ROC with the Matthews correlation coefficient (MCC) and the F1 curve. We also suggest using a multi-resolution test grid adapted to the earthquake density. We conduct a synthetic experiment where we analyse aftershock distributions stemming from a Coulomb failure (ΔCFS) model, including stress activation and shadow regions. Using these aftershock distributions, we test the true ΔCFS model as well as a simple distance-based forecast (R), only predicting activation. The standard test cannot clearly distinguish between both forecasts, particularly in the case of some outliers. However, using both MCC-F1 instead of ROC curves and a simple radial multi-resolution grid improves the test capabilities significantly. The novel findings of this study suggest that we should have at least 8 % and 5 % cells with observed earthquakes to differentiate between a near-perfect forecast model and an informationless forecast using ROC and MCC-F1, respectively. While we cannot change the observed data, we can adjust the spatial grid using a data-driven approach to reduce the disparity between the number of earthquakes and the total number of cells. Using the recently introduced Quadtree approach to generate multi-resolution grids, we test real aftershock forecast models for Chi-Chi and Landers aftershocks following the suggested guideline. Despite the improved tests, we find that the simple R model still outperforms the ΔCFS model in both cases, indicating that the latter should not be applied without further model adjustments.

Funder

H2020 Societal Challenges

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3