Estimating the likelihood of roadway pluvial flood based on crowdsourced traffic data and depression-based DEM analysis

Author:

Safaei-Moghadam ArefehORCID,Tarboton DavidORCID,Minsker Barbara

Abstract

Abstract. Water ponding and pluvial flash flooding (PFF) on roadways can pose a significant risk to drivers. Furthermore, climate change, growing urbanization, increasing imperviousness, and aging stormwater infrastructure have increased the frequency of these events. Using physics-based models to predict pluvial flooding at the road segment scale requires notable terrain simplifications and detailed information that is often not available at fine scales (e.g., blockage of stormwater inlets). This brings uncertainty into the results, especially in highly urbanized areas where micro-topographic features typically govern the actual flow dynamics. This study evaluates the potential for flood observations collected from Waze – a community-based navigation app – to estimate the likelihood of PFF at the road segment scale. We investigated the correlation of the Waze flood reports with well-known flood observations and maps, including the National Flood Hazard Layer (NFHL), high watermarks, and low water crossings data inventories. In addition, highly localized surface depressions and their catchments are derived from a 1 m resolution bare-earth digital elevation model (BE-DEM) to investigate the spatial association of Waze flood reports. This analysis showed that the highest correlation of Waze flood reports exists with local surface depressions rather than river flooding, indicating that they are potentially useful indicators of PFF. Accordingly, two data-driven models, empirical Bayes (EB) and random forest (RF) regression, were developed to predict the frequency of flooding, a proxy for flood susceptibility, for three classes of historical storm events (light, moderate, and severe) in every road segment with surface depressions. Applying the models to Waze data from 150 storms in the city of Dallas showed that depression catchment drainage area and imperviousness are the most important predictive features. The EB model performed with reasonable precision in estimating the number of PFF events out of 92 light, 41 moderate, and 17 severe storms with 0.84, 0.85, and 1.09 mean absolute errors, respectively. This study shows that Waze data provide useful information for highly localized PFF prediction. The superior performance of EB compared to the RF model shows that the historical observations included in the EB approach are important for more accurate PFF prediction.

Funder

National Institute of Standards and Technology

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference72 articles.

1. Agarwal, M., Maze, T. H., and Souleyrette, R. R.: Impacts of Weather on Urban Freeway Traffic Flow Characteristics and Facility Capacity, Proc. 2005 Mid-Continent Transp. Res. Symp., online, August 2005, pp. 18–19, https://www.researchgate.net/profile/Reginald-Souleyrette/publication/228720996 (last access: December 2022), 2005. a

2. Ahmadalipour, A. and Moradkhani, H.: A data-driven analysis of flash flood hazard, fatalities, and damages over the CONUS during 1996–2017, J. Hydrol., 578, 124106, https://doi.org/10.1016/j.jhydrol.2019.124106, 2019. a, b

3. Asquith, W. H., Roussel, M. C., Thompson, D. B., Cleveland, T. G., and Fang, X.: Summary of dimensionless Texas hyetographs and distribution of storm depth developed for Texas Department of Transportation Research Project, http://pubs.er.usgs.gov/publication/70176110 (last access: December 2022), 2005. a

4. Assumpção, T. H., Popescu, I., Jonoski, A., and Solomatine, D. P.: Citizen observations contributing to flood modelling: opportunities and challenges, Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, 2018. a, b, c, d

5. Berndtsson, R., Becker, P., Persson, A., Aspegren, H., Haghighatafshar, S., Jönsson, K., Larsson, R., Mobini, S., Mottaghi, M., Nilsson, J., and Nordström, J.: Drivers of changing urban flood risk: A framework for action, J. Environ. Manag., 240, 47–56, https://doi.org/10.1016/j.jenvman.2019.03.094, 2019. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3