POINT CLOUD SMOOTH SAMPLING AND SURFACE RECONSTRUCTION BASED ON MOVING LEAST SQUARES

Author:

Kang C. L.,Lu T. N.,Zong M. M.,Wang F.,Cheng Y.

Abstract

Abstract. In point cloud data processing, smooth sampling and surface reconstruction are important aspects of point cloud data processing. In view of the current point cloud sampling method, the point cloud distribution is not uniform, the point cloud feature information is incomplete, and the reconstructed model surface is not smooth. This paper proposes a method of smoothing sampling processing and surface reconstruction using point cloud using moving least squares method. This paper first introduces the traditional moving least squares method in detail, and then proposes an improved moving least squares method for point cloud smooth sampling and surface reconstruction. In this paper, the algorithm is designed for the proposed theory, combined with C++ and point cloud library PCL programming, using voxel grid sampling and uniform sampling and moving least squares smooth sampling comparison, after sampling, using greedy triangulation algorithm surface reconstruction. The experimental results show that the improved moving least squares method performs point cloud smooth sampling more uniformly than the voxel grid sampling and the feature information is more prominent. The surface reconstructed by the moving least squares method is smooth, the surface reconstructed by the voxel grid sampling and the uniformly sampled data surface is rough, and the surface has a rough triangular surface. Point cloud smooth sampling and surface reconstruction based on moving least squares method can better maintain point cloud feature information and smooth model smoothness. The superiority and effectiveness of the method are demonstrated, which provides a reference for the subsequent study of point cloud sampling and surface reconstruction.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3