GAIT RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS

Author:

Sokolova A.,Konushin A.

Abstract

Abstract. In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.

Publisher

Copernicus GmbH

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors: Challenges and Future Trends;Computer Modeling in Engineering & Sciences;2024

2. Recurring Gaitset: A Gait Recognition Method Based on Deep Learning and Recurring Layer Transformer;2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST);2023-12-08

3. Automatic multi-gait recognition using pedestrian’s spatiotemporal features;The Journal of Supercomputing;2023-05-26

4. Multiview Human Gait Recognition using a Hybrid CNN Approach;2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON);2023-05-01

5. Deep Learning Approaches for Human Gait Recognition: A Review;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3