EXTENDING INDOOR OPEN STREET MAPPING ENVIRONMENTS TO NAVIGABLE 3D CITYGML BUILDING MODELS: EMERGENCY RESPONSE ASSESSMENT

Author:

Fadli F.,Kutty N.,Wang Z.,Zlatanova S.,Mahdjoubi L.,Boguslawski P.,Zverovich V.

Abstract

Abstract. Disaster scenarios in high-rise buildings such as the Address Downtown, Dubai or Grenfell Tower, London have showed ones again the importance of data information availability for emergency management in buildings. 3D visualization of indoor routing services using extensive and high quality geographic data sources is essential for spatial analysis in emergency responses. In order to facilitate emergency response simulations, a combination of geometrical, graphical and semantic information is essential. Successful and efficient emergency evacuation responses is facilitated by the availability of both digital static and dynamic information of the incident site. However, interruptions may be encountered with the availability of dynamic data, where static data developed using indoor navigation ontologies serve as an alternative to inform the first responders. Thus, it is necessary to obtain a firm, interactive and quasi-realistic virtual simulation of the building environments. Voxelized CityGML models imported into voxel based hazard simulation systems fits well into the simulation algorithm requirements (Groger et al., 2008; Moreno et.al, 2010). Therefore, the research investigates an alternative platform for generating CityGML spatial analysis models. LoD4 models are developed using Computer Aided Design (Auto CAD) 2D files, crowdsourced geo-data (OpenStreetMap) and open source tools. A combination of software packages is utilized for 3D reconstruction of building interiors. This process is achieved through a Java application developed by researchers at Heidelberg University. Conclusions drawn from the research validate the 3D CityGML model generation process as an international standard to effectively enhance the outcome of emergency evacuation simulations of high rise buildings.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Optimization for Parsing Floor Plans;Journal of Computing in Civil Engineering;2022-11

2. EXERGETIC ANALYSIS OF A BUILDING AS A KEY ELEMENT OF A HEAT SUPPLY SYSTEM;Construction Materials and Products;2021-08-12

3. A crowdsourcing method for 3D furniture based on parameterized template;Journal of Physics: Conference Series;2021-06-01

4. Indoor mapping and modeling by parsing floor plan images;International Journal of Geographical Information Science;2020-07-08

5. Towards Integrating Heterogeneous Data: A Spatial DBMS Solution from a CRC-LCL Project in Australia;ISPRS International Journal of Geo-Information;2020-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3