FULLY CONVOLUTIONAL NETWORKS FOR STREET FURNITURE IDENTIFICATION IN PANORAMA IMAGES

Author:

Ao Y.,Wang J.,Zhou M.,Lindenbergh R. C.ORCID,Yang M. Y.

Abstract

Abstract. Panoramic images are widely used in many scenes, especially in virtual reality and street view capture. However, they are new for street furniture identification which is usually based on mobile laser scanning point cloud data or conventional 2D images. This study proposes to perform semantic segmentation on panoramic images and transformed images to separate light poles and traffic signs from background implemented by pre-trained Fully Convolutional Networks (FCN). FCN is the most important model for deep learning applied on semantic segmentation for its end to end training process and pixel-wise prediction. In this study, we use FCN-8s model that pre-trained on cityscape dataset and finetune it by our own data. The results show that in both pre-trained model and fine-tuning, transformed images have better prediction results than panoramic images.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensitivity of measuring the urban form and greenery using street-level imagery: A comparative study of approaches and visual perspectives;International Journal of Applied Earth Observation and Geoinformation;2023-08

2. A comprehensive framework for evaluating the quality of street view imagery;International Journal of Applied Earth Observation and Geoinformation;2022-12

3. Street view imagery in urban analytics and GIS: A review;Landscape and Urban Planning;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3