SENSITIVITY OF ACTUAL EVAPOTRANSPIRATION ESTIMATION USING THE SEBS MODEL TO VARIATION OF INPUT PARAMETERS (LST, DSSF, AERODYNAMICS PARAMETERS, LAI, FVC)

Author:

Abid N.,Mannaerts C.,Bargaoui Z.ORCID

Abstract

Abstract. Actual Evapotranspiration (AET) is a key component of the water and energy balance and hydrological regime of catchments. A land surface energy balance system model (SEBS) was used to estimate the AET of the 160100-km² Medjerda river basin in Northern Tunisia. This model uses satellite data in combination with meteorological data. In this study, we investigated the sensitivity of the AET model output to five major input variables: the 30-minute Downward Surface Shortwave solar radiation fluxes (DSSF), and Land Surface Temperatures (LST), the roughness height for momentum transfer z0m, and the influence of the spatial resolution of satellite-based Leaf Area Index (LAI) and fraction of Vegetation Cover (FVC) estimates. The DSSF product was validated using a comparison to solar radiation estimates by the Angstrom formula based on in-situ station data. Gaps in the 15-min satellite-based land surface temperature time series were filled using a sinusoidal model on pixels containing meteorological stations. One-half to two standard deviations of the errors of the regression curves were applied to analyse the sensitivity of the SEBS output. Two methods to estimate the near surface aerodynamic parameter z0m were applied and compared. Maps of LAI and FVC derived from two sensors alternatively applied as an input to the SEBS model. A sensitivity analysis, performed in the first decade of May 2010, showed that SEBS model parameterization is quite sensitive in the forestland cover type. The difference can be up to 0.3 mm day−1. For agricultural land areas, representing an important percentage of the Medjerda basin, AET estimations based on the SEBS model proved to be used to satisfy the actual evapotranspiration estimates.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3