THE COMBINATION OF TERRESTRIAL LIDAR AND UAV PHOTOGRAMMETRY FOR INTERACTIVE ARCHITECTURAL HERITAGE VISUALIZATION USING UNITY 3D GAME ENGINE

Author:

Andaru R.,Cahyono B. K.,Riyadi G.,Ramadhan G. R.,Tuntas S., ,

Abstract

Abstract. The digital 3D documentation of architectural heritage using advanced 3D measurement technologies such as UAV photogrammetry and terrestrial LiDAR (TLS) becomes a potential and efficient method since it can produce 3D pointclouds in detail and high density of pointclouds levels. However, TLS is unable to scan the roof part of tall building, whereas UAV photogrammetry achieves high density of pointclouds at that area. In order to make a complete 3D pointclouds of heritage building, we merged and integrated the TLS and UAV pointclouds data by using Iterative Closest Point (ICP) algorithms into one reference system. In this study, we collected two architectural heritage building in Yogyakarta, Indonesia, i.e., "Vredeburg Fort Museum (VFM)" and "Kotagede Great Mosque (KGM)", the oldest mosque in Yogyakarta. For the data acquisition, we used Faro Focus X330 and GLS 2000 Laser Scanner. We produced three-dimensional point clouds from UAV imagery by using Structure from Motion and Multi View Stereo (SfM-MVS) technique through Photoscan software. In order to merging and integrating both of pointclouds data, Maptek I-Site Studio 6.1 with Educational License was used. Those data were successfully registered, and according to the registration report, we had observed 20.60 mm of RMS error. The 3D models and their textures in outdoor and indoor side were processed using Autodesk software. Modelling was carried out on the structure of building’s façade base on simple geometric primitive as planes, straight lines, circles, spheres and cylinder. For interactive visualization, a modern and widely accessible game engine technology (Unity3D) was used. The result was an interactive displaying 3D model of an architectural heritage building in LOD3 level with spatial function for measuring the size and dimension, as well as the area of object. Finally, we created the online version of interactive 3D viewer utilizing WebGL API and Mapbox Unity SDK.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3