A COMPARATIVE ANALYSIS OF PLANETSCOPE AND SENTINEL SENTINEL-2 SPACE-BORNE SENSORS IN MAPPING STRIGA WEED USING GUIDED REGULARISED RANDOM FOREST CLASSIFICATION ENSEMBLE

Author:

Mudereri B. T.,Dube T.,Adel-Rahman E. M.,Niassy S.,Kimathi E.,Khan Z.,Landmann T.

Abstract

Abstract. Weeds are one of the major restrictions to sustaining crop productivity. Weeds often outcompete crops for nutrients, soil moisture, solar radiation, space and provide platforms for breeding of pests and diseases. The ever-growing global food insecurity triggers the need for spatially explicit innovative geospatial technologies that can deliver timely detection of weeds within agro-ecological systems. This will help pinpoint maize fields to be prioritized for weed control. Satellite remote sensing offers incomparable opportunities for precision agriculture, ecological applications and vegetation characterisation, with vast socioeconomic benefits. This work compares and evaluates the strength of Sentinel-2 (S2) satellite with the constellation of Dove nanosatellites i.e. PlanetScope (PS) data in detecting and mapping Striga (Striga hermonthica) weed within intercropped maize fields in Rongo sub-county in western Kenya. We applied the S2 and PS derived spectral data and vegetation indices in mapping the Striga occurrence. Data analysis was implemented, using the Guided Regularised Random Forest (GRRF) classifier. Comparatively, Sentinel-2 demonstrated slightly lower Striga detection capacity than PlanetScope, with an overall accuracy of 88% and 92%, respectively. The results further showed that the VNIR (Blue, Green Red and NIR) and the Atmospheric resistance Vegetation Index (ARVI) were the most fundamental variables in detecting and mapping Striga presence in maize fields. Findings from this work demonstrate that Sentinel-2 data has the capability to provide spatial explicit near real-time field level Striga detection – a previously daunting task with broadband multispectral sensors.

Publisher

Copernicus GmbH

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3