LITHOLOGICAL CLASSIFICATION USING MULTI-SENSOR DATA AND CONVOLUTIONAL NEURAL NETWORKS

Author:

Brandmeier M.,Chen Y.

Abstract

Abstract. Deep learning has been used successfully in computer vision problems, e.g. image classification, target detection and many more. We use deep learning in conjunction with ArcGIS to implement a model with advanced convolutional neural networks (CNN) for lithological mapping in the Mount Isa region (Australia). The area is ideal for spectral remote sensing as there is only sparse vegetation and besides freely available Sentinel-2 and ASTER data, several geophysical datasets are available from exploration campaigns. By fusing the data and thus covering a wide spectral range as well as capturing geophysical properties of rocks, we aim at improving classification accuracies and support geological mapping. We also evaluate the performance of the sensors on their own compared to a joint use as the Sentinel-2 satellites are relatively new and as of now there exist only few studies for geological applications. We developed an end-to-end deep learning model using Keras and Tensorflow that consists of several convolutional, pooling and deconvolutional layers. Our model was inspired by the family of U-Net architectures, where low-level feature maps (encoders) are concatenated with high-level ones (decoders), which enables precise localization. This type of network architecture was especially designed to effectively solve pixel-wise classification problems, which is appropriate for lithological classification. We spatially resampled and fused the multi-sensor remote sensing data with different bands and geophysical data into image cubes as input for our model. Pre-processing was done in ArcGIS and the final, fine-tuned model was imported into a toolbox to be used on further scenes directly in the GIS environment. The tool classifies each pixel of the multiband imagery into different types of rocks according to a defined probability threshold. Results highlight the power of using Sentinel-2 in conjunction with ASTER data with accuracies of 75% in comparison to only 70% and 73% for ASTER or Sentinel-2 data alone. These results are similar but examining the different classes shows that there are significant improvements for classes such as dolerite or carbonate sediments that are not that widely distributed in the area. Adding geophysical datasets reduced accuracies to 60%, probably due to an order of magnitude difference in spatial resolution. In comparison, Random Forest (RF) and Support Vector Machines (SVMs) that were trained on the same data only achieve accuracies of 46 % and 36 % respectively. Most insecurity is due to labelling errors and labels with mixed lithologies. However, results show that the U-Netmodel is a powerful alternative to other classifiers for medium-resolution multispectral data.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3