A GENERIC RIGOROUS SENSOR MODEL FOR PHOTOGRAMMETRIC PROCESSING OF PUSHBROOM PLANETARY IMAGES

Author:

Geng X.,Xing S.,Xu Q.

Abstract

Abstract. Currently, each planetary exploration mission team always develops its own software modules to support the photogrammetric processing of planetary images, and as a result of that the main drawbacks are lacking software reusability and the high cost of software development and maintenance. This is mainly due to that there is lack of a highly universal sensor model in the planetary mapping community. This paper presents a generic rigorous sensor model (RSM) for the photogrammetric processing of pushbroom planetary images. The main contributions of this paper include: (1) the implementation details of the generic RSM; (2) the optimized coordinates transformation methods between 3D ground points and 2D image points for linear pushbroom images; (3) a pipeline to acquire exterior orientation (EO) parameters for each planetary image. The generic RSM is developed based on the methodology used in airborne linear scanners ADS40. Specifically, the generic RSM comprises of a camera file and an orientation data file for each image. The camera file stores each detector’s calibrated image coordinates and the orientation data file contains each scan line’s EO parameters, such that the RSM can perform coordinates transformation among pixel coordinates, focal plane coordinates and ground coordinates. Furthermore, the generic RSM supports varying exposure time, summing mode and image distortions, which are typical problems that need to be solved in planetary mapping. We tested the generic RSM with Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC), Chandrayaan-1 Moon Mineralogy Mapper (M3) and Mars Express (MEX) High Resolution Stereo Camera (HRSC) images. The geometric accuracy and computational efficiency of the developed generic RSM were compared with the famous planetary mapping software, namely Integrated System for Imagers and Spectrometers (ISIS). The experimental results demonstrate that the generic RSM has the merits of processing various types of pushbroom planetary images with a unified way and decreasing the software development and maintenance burden. Moreover, the developed generic RSM significantly improves the computational efficiency of orthophoto generation and tie points extraction for pushbroom planetary images.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3