Author:
Aissou B.,Belhadj Aissa A.
Abstract
Abstract. Light Detection And Ranging (LiDAR) is an active remote sensing technology used for several applications. A segmentation of Airborne Laser Scanning (ALS) point cloud is very important task that still interest many scientists. In this paper, the Connected Component Analysis (CCA), or Connected Component Labeling is proposed for clustering non-planar objects from Airborne Laser Scanning (ALS) LiDAR point cloud. From raw point cloud, sub-surface segmentation method is applied as preliminary filter to remove planar surfaces. Starting from unassigned points , CCA is applied on 3D data considering only neighboring distance as initial parameter. To evaluate the clustering, an interactive labeling of the resulting components is performed. Then, components are classified using Support Vector Machine, Random Forest and Decision Tree. The ALS data used is characterized by a low density (4–6 points/m2), and is covering an urban area, located in residential parts of Vaihingen city in southern Germany. The visualization of the results shown the potential of the proposed method to identify dormers, chimneys and ground class.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献