GENERAL DEEP LEARNING SEGMENTATION PROCESS USED IN REMOTE SENSING IMAGES

Author:

Wang H.-C.

Abstract

Abstract. In the present research, we aim at constructing a general segmentation process for different kinds of remote sensing images and various use cases. We focus on the differences in characteristics of the remote sensing and ordinary images, such as irregular shape, lack of labeled images, and normalization issues. The process includes labeling, preprocessing, augmentation, test data sampling, model building, as well as prediction and merging steps. Labeling serves to identify target objects represented in remote sensing images efficiently. The preprocessing step can be applied to reshape an image aiming to fit the requirements of the general artificial intelligence (AI) model and to accelerate steps. Augmentation mitigates the shortage of labeled images. Test data sampling is performed to evaluate the model performance. Finally, prediction and merging are applied to output a full-sized remote sensing image prediction result. In this research, the landslide segmentation, crop farmland segmentation, and cloud segmentation tasks are considered to evaluate the process. Intersection of union (IOU) is employed as evaluation metric. Eventually, we achieve the performance of 72% IOU in the landslide segmentation task, 83% IOU in the crop farmland recognition task, and the 86% IOU in cloud segmentation task by using the proposed process. This supports that the developed process can by further applied considering different remote sensing images and use cases.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3