BUILDING OUTLINE EXTRACTION FROM AERIAL IMAGERY AND DIGITAL SURFACE MODEL WITH A FRAME FIELD LEARNING FRAMEWORK

Author:

Sun X.,Zhao W.,Maretto R. V.,Persello C.

Abstract

Abstract. Deep learning-based semantic segmentation models for building delineation face the challenge of producing precise and regular building outlines. Recently, a building delineation method based on frame field learning was proposed by Girard et al. (2020) to extract regular building footprints as vector polygons directly from aerial RGB images. A fully convolution network (FCN) is trained to learn simultaneously the building mask, contours, and frame field followed by a polygonization method. With the direction information of the building contours stored in the frame field, the polygonization algorithm produces regular outlines accurately detecting edges and corners. This paper investigated the contribution of elevation data from the normalized digital surface model (nDSM) to extract accurate and regular building polygons. The 3D information provided by the nDSM overcomes the aerial images’ limitations and contributes to distinguishing the buildings from the background more accurately. Experiments conducted in Enschede, the Netherlands, demonstrate that the nDSM improves building outlines’ accuracy, resulting in better-aligned building polygons and prevents false positives. The investigated deep learning approach (fusing RGB + nDSM) results in a mean intersection over union (IOU) of 0.70 in the urban area. The baseline method (using RGB only) results in an IOU of 0.58 in the same area. A qualitative analysis of the results shows that the investigated model predicts more precise and regular polygons for large and complex structures.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3