IDENTIFICATION OF MISCLASSIFIED PIXELS IN SEMANTIC SEGMENTATION WITH UNCERTAINTY EVALUATION

Author:

Budde L. E.,Bulatov D.,Iwaszczuk D.

Abstract

Abstract. Classification, and in particular semantic segmentation, plays a major role in remote sensing. In remote sensing, the classes usually correspond to landcover or landuse types while the data elements are image pixels. The results are so-called semantically segmented pixels describing the content of the data for each pixel. The identification of misclassified pixels is essential to perceive the overall performance of the classification algorithm. In the case of semantic segmentation, it is typically done with ground truth labels. However, such ground truth labels are rare and mostly reserved for training only. Especially deep learning approaches are data-hungry algorithms requesting a lot of labeled examples. In this work, we explore the possibility of using Monte-Carlo dropout for the identification of model-induced misclassifications. In particular, we obtain uncertainty measures from several inferences induced by the Monte-Carlo dropout. Furthermore, we examine how Markov Random Field optimization can reduce the number of misclassifications and facilitate their identification. The extent to which uncertainties provide information about misclassifications is assessed. Our results allow detecting 51 % of the misclassifications using uncertainties. Application of Markov Random Field optimization leads to a reduction of the percentage of misclassifications while detecting 0.4 % more misclassifications as without.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty-Aware 2d/3d Change Detection for Natural Disaster Response;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Characterization of Out-of-distribution Samples from Uncertainty Maps Using Supervised Machine Learning;Lecture Notes in Computer Science;2024

3. Influence of Out-of-Distribution Examples on the Quality of Semantic Segmentation in Remote Sensing;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

4. Image Classification Based on Light Convolutional Neural Network Using Pulse Couple Neural Network;Computational Intelligence and Neuroscience;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3