PREPROCESSING ARABIC DIALECT FOR SENTIMENT MINING: STATE OF ART

Author:

Nassr Z.,Sael N.,Benabbou F.

Abstract

Abstract. Sentiment Analysis concerns the analysis of ideas, emotions, evaluations, values, attitudes and feelings about products, services, companies, individuals, tasks, events, titles and their characteristics. With the increase in applications on the Internet and social networks, Sentiment Analysis has become more crucial in the field of text mining research and has since been used to explore users’ opinions on various products or topics discussed on the Internet. Developments in the fields of Natural Language Processing and Computational Linguistics have contributed positively to Sentiment Analysis studies, especially for sentiments written in non-structured or semi-structured languages. In this paper, we present a literature review on the pre-processing task on the field of sentiment analysis and an analytical and comparative study of different researches conducted in Arabic social networks. This study allowed as concluding that several works have dealt with the generation of stop words dictionary. In this context, two approaches are adopted: first, the manual one, which gives rise to a limited list, and second, the automatic, where the list of stop words is extracted from social networks based on defined rules. For stemming two, algorithms have been proposed to isolate prefixes and suffixes from words in dialects. However, few works have been interested in dialects directly without translation. The Moroccan dialect in particular is considered as the 5th dialect studied among Arabic dialects after Jordanian, Egyptian, Tunisian and Algerian dialects. Despite the significant lack in studies carried out on Arabic dialects, we were able to extract several conclusions about the difficulties and challenges encountered through this comparative study, as well as the possible ways and tracks to study in any dialects sentiment analysis pre-processing solution.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sentiment Analysis of Libyan Middle Region Using Machine Learning with TF-IDF and N-grams;Communications in Computer and Information Science;2024

2. A systematic literature review of Arabic dialect sentiment analysis;Journal of King Saud University - Computer and Information Sciences;2023-06

3. Sentiment Analysis of Emirati Dialect;Big Data and Cognitive Computing;2022-05-17

4. Sentiment Analysis of Arabic Tweets Regarding Distance Learning in Saudi Arabia during the COVID-19 Pandemic;Sensors;2021-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3