BUILDING DETECTION FROM SAR IMAGES USING UNET DEEP LEARNING METHOD

Author:

Emek R. A.,Demir N.

Abstract

Abstract. SAR images are different from the optical images in terms of image properties with the values of scattering instead of reflectance. This makes SAR images difficult to apply the traditional object detection methodologies. In recent years, deep learning models are frequently used in segmentation and object detection purposes. In this study, we have investigated the potential of U-Net models for building detection from SAR and optical image fusion. The datasets used are Sentinel 1 SAR and Sentinel-2 multispectral images, provided from ‘SpaceNet 6 Multi Sensor All-Weather Mapping’ challenge. These images cover an area of 120 km2 in Rotterdam, the Netherlands. As training datasets 20 pieces of 900 by 900 pixel sized HV polarized and optical image patches have been used together. The calculated loss value is 0.4 and the accuracy is 81%.

Publisher

Copernicus GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved self-training network for building and road extraction in urban areas by integrating optical and radar remotely sensed data;Earth Science Informatics;2024-03-15

2. Exploring Models and Band Selection for Improved Contrail Detection with Deep Learning;Journal of Advances in Information Technology;2024

3. Semantic Segmentation of Aerial Images Using U-net for Archaeological Prospection;2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS);2023-04-19

4. Image Enhancement of 3-D SAR via U-Net Framework;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

5. Building detection methods from remotely sensed images;Current Science;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3