HYPERSPECTRAL IMAGE CLASSIFICATION USING RESIDUAL 2D AND 3D CONVOLUTIONAL NEURAL NETWORK JOINT ATTENTION MODEL

Author:

Yuan Q.,Ang Y.,Shafri H. Z. M.

Abstract

Abstract. Hyperspectral image classification (HSIC) is a challenging task in remote sensing data analysis, which has been applied in many domains for better identification and inspection of the earth surface by extracting spectral and spatial information. The combination of abundant spectral features and accurate spatial information can improve classification accuracy. However, many traditional methods are based on handcrafted features, which brings difficulties for multi-classification tasks due to spectral intra-class heterogeneity and similarity of inter-class. The deep learning algorithm, especially the convolutional neural network (CNN), has been perceived promising feature extractor and classification for processing hyperspectral remote sensing images. Although 2D CNN can extract spatial features, the specific spectral properties are not used effectively. While 3D CNN has the capability for them, but the computational burden increases as stacking layers. To address these issues, we propose a novel HSIC framework based on the residual CNN network by integrating the advantage of 2D and 3D CNN. First, 3D convolutions focus on extracting spectral features with feature recalibration and refinement by channel attention mechanism. The 2D depth-wise separable convolution approach with different size kernels concentrates on obtaining multi-scale spatial features and reducing model parameters. Furthermore, the residual structure optimizes the back-propagation for network training. The results and analysis of extensive HSIC experiments show that the proposed residual 2D-3D CNN network can effectively extract spectral and spatial features and improve classification accuracy.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative optimization of spatial-spectrum parallel convolutional network (CO-PCN) for hyperspectral image classification;International Journal of Machine Learning and Cybernetics;2023-01-05

2. Subgrouping-Based NMF with Imbalanced Class Handling for Hyperspectral Image Classification;2022 25th International Conference on Computer and Information Technology (ICCIT);2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3