DEEP LEARNING AND STATISTICAL MODELS FOR DETECTION OF WHITE STEM BORER DISEASE IN ARABICA COFFEE

Author:

Bhandarkar S.,Prasad R.,Agarwal V.,Hebbar R.,Uma D.,Venkata Reddy Y. B.,Raghuramulu Y.,Ganesha Raj K.

Abstract

<p><strong>Abstract.</strong> Early detection of crop pest and disease is very critical for taking up suitable control measures to reduce the loss of economic yield. Coffee is an important commercial crop in India which is affected by pests and diseases every year resulting in major yield loss. White stem borer (<i>Xylotrechus quadripes</i>) is the most serious pest of coffee (<i>Arabica</i> sp.) in India causing substantial loss of yield every year. Detection of the infestation in its early stage is quite challenging. In this regard, image pattern recognition techniques offer cost effective and scalable solutions. An image library was created representing different stages of the plant infestation using camera/mobile devices. Our Convolutional Neural Network (CNN) models use these images of healthy and infested plants for early detection of white stem borer infestation. The overall methodology included image processing, machine learning, supervised transfer learning and unsupervised auto-encoding techniques to solve the problem of early detection and severity of the infestation. Using the Inception v3 transfer learning model, we obtained average accuracy of 85.5% which is quite encouraging with limited image datasets. We explore Unsupervised Autoencoder models, which can work with limited image datasets. In addition, statistical analysis of long-term climatic factors such as temperature, rainfall, humidity and luminescence is explored for reliable detection and diagnosis of the infestation. Based on the encouraging results, a mobile application is proposed for near real time monitoring of WSB infestation to help the coffee planter’s community.</p>

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of White Stem Borer Disease in Coffee Plantation using Autonomous Multi Terrain Robot;2023 19th IEEE International Colloquium on Signal Processing & Its Applications (CSPA);2023-03-03

2. Coffee yield estimation by Landsat-8 imagery considering shading effects of planting row's orientation in center pivot;Remote Sensing Applications: Society and Environment;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3