AENN: A GENERATIVE ADVERSARIAL NEURAL NETWORK FOR WEATHER RADAR ECHO EXTRAPOLATION

Author:

Jing J. R.,Li Q.,Ding X. Y.,Sun N. L.,Tang R.,Cai Y. L.

Abstract

Abstract. Weather radar echo is one of the fundamental data for meteorological workers to weather systems identification and classification. Through the technique of weather radar echo extrapolation, the future short-term weather conditions can be predicted and severe convection storms can be warned. However, traditional extrapolation methods cannot offer accurate enough extrapolation results since their modeling capacity is limited, the recent deep learning based methods make some progress but still remains a problem of blurry prediction when making deeper extrapolation, which may due to they choose the mean square error as their loss function and that will lead to losing echo details. To address this problem and make a more realistic and accurate extrapolation, we propose a deep learning model called Adversarial Extrapolation Neural Network (AENN), which is a Generative Adversarial Network (GAN) structure and consist of a conditional generator and two discriminators, echo-frame discriminator and echo-sequence discriminator. The generator and discriminators are trained alternately in an adversarial way to make the final extrapolation results be realistic and accurate. To evaluate the model, we conduct experiments on extrapolating 0.5h, 1h, and 1.5h imminent future echoes, the results show that our proposed AENN can achieve the expected effect and outperforms other models significantly, which has a powerful potential application value for short-term weather forecasting.

Publisher

Copernicus GmbH

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3