STATISTICAL OUTLIER DETECTION METHOD FOR AIRBORNE LIDAR DATA

Author:

Carrilho A. C.,Galo M.,Santos R. C.

Abstract

Abstract. Sampling the Earth’s surface using airborne LASER scanning (ALS) systems suffers from several factors inherent to the LASER system itself as well as external factors, such as the presence of particles in the atmosphere, and/or multi-path returns due to reflections. The resulting point cloud may therefore contain some outliers and removing them is an important (and difficult) step for all subsequent processes that use this kind of data as input. In the literature, there are several approaches for outlier removal, some of which require external information, such as spatial frequency characteristics or presume parametric mathematical models for surface fitting. A limitation on the height histogram filtering approach was identified from the literature review: outliers that lie within the ground elevation difference might not be detected. To overcome such a limitation, this paper proposes an adaptive alternative based on point cloud cell subdivision. Instead of computing a single histogram for the whole dataset, the method applies the filtering to smaller patches, in which the ground elevation difference can be ignored. A study area was filtered, and the results were compared quantitatively with two other methods implemented in both free and commercial software packages. The reference data was generated manually in order to provide useful quality measures. The experiment shows that none of the tested filters was able to reach a level of complete automation, therefore manual corrections by the operator are still necessary.

Publisher

Copernicus GmbH

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3