4D GIS FOR MONITORING RIVER BANK EROSION AT MEANDER BEND SCALE: CASE OF MOSELLE RIVER

Author:

Koehl M.,Piasny G.,Thomine V.,Garambois P.-A.,Finaud-Guyot P.,Guillemin S.,Schmitt L.ORCID

Abstract

Abstract. The "Wild Moselle" regional nature reserve extends over 13 km at the western foothills of the Vosges Mountains (France). The hydrological regime of the river is characterized by high flow in winter and spring and low flow in summer. Its average slope is 0.12 % and its average bankfull width is 60 m. The coarse sediment load comes mainly from bank erosion. Although this sector is relatively less affected by past or present human activities, the propagation of morphodynamic adjustments initiated by actions carried out both upstream and downstream of this sector impacts the current functioning of the river. These erosion waves converge today towards the central part of the reserve, which led to the collapse of the central pier of the Bainville-aux-Miroirs bridge during a 2-year flood in 2011, and could induce potential risks of defluviation which may destabilize infrastructures. In this context, the study carried out aims to characterize and anticipate the morphodynamic evolutions of the Moselle to be able to propose scenarios of management and restoration of the lateral mobility of the river. For this purpose, a 2D hydro-sedimentary model is being built over the entire reserve, combined with a detailed morpho-sedimentary monitoring. In order to improve the understanding of the lateral migration of the Moselle River, a photogrammetric monitoring was carried out along the concave bank of the most active meander of the studied sector. To follow this morphological evolution more closely, it was decided to establish a 4D GIS. The objective of this monitoring is to compare the rate of bank retreat with hydrodynamic parameters in order to estimate the geotechnical properties of the bank. Comparison of the observed and modelled bank retreat must thus allow these different parameters to be calibrated in the hydro-sedimentary model. As part of this work, this paper aims to highlight the use of 4D GIS to monitor bank retreat at the scale of a meander bend and is divided into three different parts: (i) a state of art to situate the study into the current knowledge and technologies, (ii) a presentation of the study area and the measurements carried out and (iii) a description of the different 3D or 4D data produced and the consequent spatial analyses.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3