Abstract
Abstract. Land cover classification is important for various environmental assessments. The opportunity of imaging the Earth’s surface makes remote sensing techniques efficient approaches for land cover classification. The only country-wide land cover map of Iran was produced by the Iranian Space Agency (ISA) using low spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and a basic classification method. Thus, it is necessary to produce a more accurate map using advanced remote sensing and machine learning techniques. In this study, multi-temporal Landsat-8 data (1,321 images) were inserted into a Random Forest (RF) algorithm to classify the land cover of the entire country into 13 categories. To this end, all steps, including pre-processing, classification, and accuracy assessment were implemented in the Google Earth Engine (GEE) platform. The overall classification accuracy and Kappa Coefficient obtained from the Iran-wide map were 74% and 0.71, respectively, indicating the high potential of the proposed method for large-scale land cover mapping.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献