AERIAL POINT CLOUD CLASSIFICATION WITH DEEP LEARNING AND MACHINE LEARNING ALGORITHMS

Author:

Özdemir E.,Remondino F.ORCID,Golkar A.

Abstract

Abstract. With recent advances in technology, 3D point clouds are getting more and more frequently requested and used, not only for visualization needs but also e.g. by public administrations for urban planning and management. 3D point clouds are also a very frequent source for generating 3D city models which became recently more available for many applications, such as urban development plans, energy evaluation, navigation, visibility analysis and numerous other GIS studies. While the main data sources remained the same (namely aerial photogrammetry and LiDAR), the way these city models are generated have been evolving towards automation with different approaches. As most of these approaches are based on point clouds with proper semantic classes, our aim is to classify aerial point clouds into meaningful semantic classes, e.g. ground level objects (GLO, including roads and pavements), vegetation, buildings’ facades and buildings’ roofs. In this study we tested and evaluated various machine learning algorithms for classification, including three deep learning algorithms and one machine learning algorithm. In the experiments, several hand-crafted geometric features depending on the dataset are used and, unconventionally, these geometric features are used also for deep learning.

Publisher

Copernicus GmbH

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3