THE IMPORTANCE OF SEASONAL TEXTURAL FEATURES FOR OBJECT-BASED CLASSIFICATION OF WETLANDS: NEW YORK STATE CASE STUDY

Author:

Adeli S.,Quackenbush L. J.,Salehi B.,Mahdianpari M.

Abstract

Abstract. Seasonal variations result in hydrophytes and undrained hydric soil changes in wetland areas, which lead to a dynamic environment that makes wetland classification challenging. This study aims to explore the applicability of multi-seasonal Gray-Level Co-Occurrence Matrix (GLCM) texture-derived features for object-based wetland classification over large-extent for the first time. We attempted to enhance the performance of the random forest classifier by incorporating multi-source remote sensing data, including Sentinel-2, Sentinel-1, Alos-Palsar, and topographic features. A total of 47 features were extracted from multi-source remote sensing data. In this context, we assessed the applicability of multi- versus mono-seasonal derived features for the wetland's classes with low within-class separability. We investigated the mean decrease in the Gini impurity index for each GLCM feature. We observed that including GLCM features enhanced overall accuracy by 7.38% when using imagery from one season and 4.21% for multi-season imagery. The multi-season scenario that included GLCM measures (93.49%) attained the highest overall accuracy. For this scenario, the means of decrease in Gini impurity index suggested that Soil Adjusted Vegetation Index, Modified Normalized Difference Water Index, slope, correlation in summer (GLCM feature), and Sentinel-1 VH are the most important features in increasing the random forest's classifier performance. In looking at the GLCM features, the separability analysis suggested that Entropy, Sum of Average, and Variance calculated from the summer imagery improve the classifier's performance while other textural features from spring imagery better contributed to classifier accuracy.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3