EVALUATION OF SAR TO OPTICAL IMAGE TRANSLATION USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORK FOR CLOUD REMOVAL IN A CROP DATASET

Author:

Christovam L. E.,Shimabukuro M. H.,Galo M. L. B. T.,Honkavaara E.

Abstract

Abstract. Most methods developed to map crop fields with high-quality are based on optical image time-series. However, often accuracy of these approaches is deteriorated due to clouds and cloud shadows, which can decrease the availably of optical data required to represent crop phenological stages. In this sense, the objective of this study was to implement and evaluate the conditional Generative Adversarial Network (cGAN) that has been indicated as a potential tool to address the cloud and cloud shadow removal; we also compared it with the Witthaker Smother (WS), which is a well-known data cleaning algorithm. The dataset used to train and assess the methods was the Luis Eduardo Magalhães benchmark for tropical agricultural remote sensing applications. We selected one MSI/Sentinel-2 and C-SAR/Sentinel-1 image pair taken in days as close as possible. A total of 5000 image pair patches were generated to train the cGAN model, which was used to derive synthetic optical pixels for a testing area. Visual analysis, spectral behaviour comparison, and classification were used to evaluate and compare the pixels generated with the cGAN and WS against the pixel values from the real image. The cGAN provided consistent pixel values for most crop types in comparison to the real pixel values and outperformed the WS significantly. The results indicated that the cGAN has potential to fill cloud and cloud shadow gaps in optical image time-series.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EDCGAN: Encoder Decoder based Conditional GAN for SAR to Optical image translation ✱;Proceedings of the Thirteenth Indian Conference on Computer Vision, Graphics and Image Processing;2022-12-08

2. Pix2pix Conditional Generative Adversarial Network with MLP Loss Function for Cloud Removal in a Cropland Time Series;Remote Sensing;2021-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3