AN ADAPTIVE SUPERPIXELS FOR VEGETATION DETECTION ON HIGH RESOLUTION IMAGES BASED ON MLP

Author:

Tang X.,Huang X.,Xiong Z.,Wang X.,Zhan Z.

Abstract

Abstract. Vegetation detection aims to find the area which should be attributed with the labels of vegetation on the captured images, such as forest, grass land etc., and nowadays it is a key research topic in the field of remote sensing information processing and application. Over the last few years, the deep learning method based on convolutional neural network (CNN) has become the mainstream method for vegetation detection. However, due to the peculiarities of the underlying encoding and decoding structures, it is common for some CNN methods to loss some boundary details of vegetation when employing high-resolution images with rich details and clear boundaries. In order to improve the boundary localization capability of vegetation, this paper proposes a hybrid solution, i.e., an MLP (MultiLayer Perceptron)-based high-resolution image adaptive superpixels vegetation detection method. Compared with the traditional watershed transform algorithm, this method adopts the two-step boundary marching criterion to generate superpixels with more adherent boundary and compact regularity which contains adaptive neighborhood information by design. Based on the generated superpixels with boundary detail information, this paper applies MLP for binary predictions, i.e., vegetation or non-vegetation. The experimental results show that our method has more precise vegetation boundary localization and higher accuracy compared with several state-of-the-art methods on the UAV image data set and ISPRS data set.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3