Author:
Tang X.,Huang X.,Xiong Z.,Wang X.,Zhan Z.
Abstract
Abstract. Vegetation detection aims to find the area which should be attributed with the labels of vegetation on the captured images, such as forest, grass land etc., and nowadays it is a key research topic in the field of remote sensing information processing and application. Over the last few years, the deep learning method based on convolutional neural network (CNN) has become the mainstream method for vegetation detection. However, due to the peculiarities of the underlying encoding and decoding structures, it is common for some CNN methods to loss some boundary details of vegetation when employing high-resolution images with rich details and clear boundaries. In order to improve the boundary localization capability of vegetation, this paper proposes a hybrid solution, i.e., an MLP (MultiLayer Perceptron)-based high-resolution image adaptive superpixels vegetation detection method. Compared with the traditional watershed transform algorithm, this method adopts the two-step boundary marching criterion to generate superpixels with more adherent boundary and compact regularity which contains adaptive neighborhood information by design. Based on the generated superpixels with boundary detail information, this paper applies MLP for binary predictions, i.e., vegetation or non-vegetation. The experimental results show that our method has more precise vegetation boundary localization and higher accuracy compared with several state-of-the-art methods on the UAV image data set and ISPRS data set.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献