EVALUATION OF UNet AND UNet++ ARCHITECTURES IN HIGH RESOLUTION IMAGE CHANGE DETECTION APPLICATIONS

Author:

Bousias Alexakis E.,Armenakis C.

Abstract

Abstract. Change detection applications from satellite imagery can be a very useful tool in monitoring human activities and understanding their interaction with the physical environment. In the past few years most of the recent research approaches to automatic change detection have been based on the application of Deep Learning techniques and especially on variations of Convolutional Neural Network architectures due to their great representational capacity and their state-of-the-art performance in visual tasks such as image classification and semantic segmentation. In this work we train and evaluate two CNN architectures, UNet and UNet++, on a change detection task using Very High-Resolution satellite images collected at two different time epochs. We also examine and analyse the effect of two different loss functions, a combination of the Binary Cross Entropy Loss with the Dice Loss, and the Lovász Hinge loss, both of which were specifically designed for semantic segmentation applications. Finally, we experiment with the use of data augmentation as well as deep supervision techniques to evaluate and quantify their contribution in the final classification performance of the different network architectures.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3