PRELIMINARY CONCERNS ABOUT AGRONOMIC INTERPRETATION OF NDVI TIME SERIES FROM SENTINEL-2 DATA: PHENOLOGY AND THERMAL EFFICIENCY OF WINTER WHEAT IN PIEMONTE (NW ITALY)

Author:

Farbo A.,Sarvia F.,De Petris S.,Borgogno-Mondino E.

Abstract

Abstract. TELECER project is supported through Rural Development Programme regional action of EU CAP and is aimed at providing Precision Agriculture–devoted services for cereals monitoring in the Piemonte Region (NW-Italy) context. In this work authors explored some general and preliminary issues mainly aimed at demonstrating and formalizing those evident relationships existing between NDVI image time series and the main ordinary agronomic parameters, with special focus on phenology and thermal efficiency of crops as related to Growing Degrees Day (GDD). Winter wheat was investigated and relationships calibrated at field level, making possible to spatially characterise environmental and management effects. Two different analysis were achieved: (i) one aimed at mapping crop phenological metrics, as derivable from NDVI S2 time series; (ii) one aimed at locally modelling relationship linking GDD and NDVI to somehow test the thermal efficiency of crops in the different parts of the study area. The first analysis showed that the end of season appears to be the most constant phenological metric in the study area possibly demonstrating a time concentration of harvest operations in the area. Differently, the peak of season and the start of season metrics showed to be largely varying in the study, thus suggesting to be stronger predictors: (i) of crop development; (ii) of the effects induced by local agronomical practices. Several base temperatures were used to compute correspondent GDD. These were tested against NDVI and modelled by a parabolic model at field level. Model coefficients distribution were analysed and mapped the correspondent agronomic interpretation suggested.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3