Author:
Belgiu M.,Zhou Y.,Marshall M.,Stein A.
Abstract
Abstract. Dynamic Time Warping (DTW) has been successfully used for crops mapping due to its capability to achieve good classification results when a reduced number of training samples and irregular satellite image time series is available. Despite its recognized advantages, DTW does not account for the duration and seasonality of crops and local differences when assessing the similarity between two temporal sequences. In this study, we implemented a Weighted Derivative modification of DTW (WDDTW) and compared it with DTW and Time Weighted Dynamic Time Warping (TWDTW) for crops mapping. We show that WDDTW outperformed DTW achieving an overall accuracy of 67 %, whereas DTW obtained an accuracy of 57%. Yet, TWDTW performed better than both methods obtaining an accuracy of 88%.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献