SENSOR FUSION, GIS AND AI TECHNOLOGIES FOR DISASTER MANAGEMENT

Author:

Kemper H.,Kemper G.

Abstract

Abstract. Modern Disaster Management Systems are based on several columns that combine theory and practice, software, and hardware being under technological advance. In all parts, spatial data is key in order to analyze existing structure, assist in risk assessment and update the information after a disaster incident. This paper focus on technological advances in several fields of spatial analysis putting together the advantages, limitations and technological aspects from well-known or even innovative methods, highlighting the huge potential of nowadays technologies for the field of Disaster Risk Management (DRM).A focus then is lying on GIS and Remote Sensing technologies that are showing the potential of high-quality sensors and image products that are getting easier to access and captured with recent technology. Secondly, several relevant sensors being thermal or laser-based are introduced pointing out the application possibilities, their limits, and potential fusion of them. Emphasis is further driven to Machine Learning techniques adopted from Artificial Intelligence that improve algorithms for auto-detection and represent an important step forwards to an integrated system of spatial data use in the Disaster Management Cycle. The combination of Multi-Sensor Systems, new Platform technologies, and Machine Learning indeed creates a very important benefit for the future.

Publisher

Copernicus GmbH

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Asset Management System's Integration with AI and IoT-Logger to Reduce Water Loss;2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS);2024-02-21

2. GeomEthics: Ethical Considerations About Using Artificial Intelligence in Geomatics;Lecture Notes in Computer Science;2024

3. A Novel Approach to Incomplete Multimodal Learning for Remote Sensing Data Fusion;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Machine Learning for Emergency Management: A Survey and Future Outlook;Proceedings of the IEEE;2023-01

5. Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations;International Journal of Production Economics;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3