LANDSLIDE DETECTION IN CENTRAL AMERICA USING THE DIFFERENTIAL BARE SOIL INDEX

Author:

Ariza A.,Davila N. A.,Kemper H.,Kemper G.

Abstract

Abstract. The increasing availability of EO data from the Copernicus program through its Sentinel satellites of the medium spatial and spectral resolution has generated new applications for risk management and disaster management. The recent growth in the intensity and number of hurricanes and earthquakes has demanded an increase in the monitoring of landslides. It is necessary to monitor large areas at a detailed level, which has previously been unsatisfactory due to its reliance on the interpretation of aerial photographs and the cost of high-resolution images.Using the differential Bare Soil Index for optical imagery interpretation in combination with cloud-computing in Google Earth Engine is a novel approach. Applying this method on a recent landslide event in Oaxaca in Mexico around 62% of the landslides were detected automatically, however, there is a big potential for improvement. Including NDVI values and considering images with a higher spatial resolution could contribute to the enhancement of landslide detection, as the majority of missed events have a size smaller than half a pixel. Landslide detection in Google Earth Engine has become a promising approach for big data processing and landslide inventory creation.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3