A COMPARATIVE STUDY OF ADVANCED LAND USE/LAND COVER CLASSIFICATION ALGORITHMS USING SENTINEL-2 DATA

Author:

Nivedita Priyadarshini K.,Kumar M.,Rahaman S. A.ORCID,Nitheshnirmal S.

Abstract

Abstract. Land Use/ Land Cover (LU/LC) is a major driving phenomenon of distributed ecosystems and its functioning. Interpretation of remote sensor data acquired from satellites requires enhancement through classification in order to attain better results. Classification of satellite products provides detailed information about the existing landscape that can also be analyzed on temporal basis. Image processing techniques acts as a platform for analysis of raw data using supervised and unsupervised classification algorithms. Classification comprises two broad ranges in which, the analyst specifies the classes by defining the training sites called supervised classification where as automatically clustering of pixels to the defined number of classes namely the unsupervised classification. This study attempts to perform the LU/LC classification for Paonta Sahib region of Himachal Pradesh which is a major industrial belt. The data obtained from Sentinel 2A, from which the stacked bands of 10 m resolution are only used. Various classification algorithms such as Minimum Distance, Maximum Likelihood, Parallelepiped and Support Vector Machine (SVM) of supervised classifiers and ISO Data, K-Means of unsupervised classifiers are applied. Using the applied classification results, accuracy assessment is estimated and compared. Of these applied methods, the classification method, maximum likelihood provides highest accuracy and is considered to be the best for LU/LC classification using Sentinel-2A data.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3