CROP CLASSIFICATION ON SINGLE DATE SENTINEL-2 IMAGERY USING RANDOM FOREST AND SUPPOR VECTOR MACHINE

Author:

Saini R.,Ghosh S. K.

Abstract

Abstract. Mapping of the crop using satellite images is a challenging task due to complexities within field, and having the similar spectral properties with other crops in the region. Recently launched Sentinel-2 satellite has thirteen spectral bands, fast revisit time and resolution at three different level (10 m, 20 m, 60 m), as well as the free availability of data, makes it a good choice for vegetation mapping. This study aims to classify crop using single date Sentinel-2 imagery in the Roorkee, district Haridwar, Uttarakhand, India. Classification is performed by using two most popular and efficient machine learning algorithms: Random Forest (RF) and Support Vector Machine (SVM). In this study, four spectral bands, i.e., Near Infrared, Red, Green, and Blue of Sentinel-2 satellite are stacked for the classification. Results show that overall accuracy of the classification achieved by RF and SVM using Sentinel-2 imagery are 84.22% and 81.85% respectively. This study demonstrates that both classifiers performed well by setting an optimal value of tuning parameters, but RF achieved 2.37% higher overall accuracy over SVM. Analysis of the results states that the class specific accuracies of High-Density Forest attain the highest accuracy whereas Fodder class reports the lowest accuracy. Fodder achieve lowest accuracy because there is an intermixing of pixels among Wheat and Fodder crops. In this study, it is found that RF shows better potential in classifying crops more accurately in comparison to SVM and Sentinel-2 has great potential in vegetation mapping domain in remote sensing.

Publisher

Copernicus GmbH

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3