EVALUATING APPROACHES RELATING ECOSYSTEM PRODUCTIVITY WITH DESIS SPECTRAL INFORMATION

Author:

Huemmrich K. F.,Campbell P. E. K.ORCID,Harding D. J.,Ranson K. J.,Wynne R.ORCID,Thomas V.,Middleton E. M.

Abstract

Abstract. Data from the DLR Earth Sensing Imaging Spectrometer (DESIS), mounted on the International Space Station (ISS), were used to develop and test algorithms for remotely retrieving ecosystem productivity. Twenty DESIS images were used from three widely separated forested study sites representing deciduous and conifer forests. Gross primary production (GPP) values from eddy covariance flux towers at the sites were matched with DESIS spectral reflectances collected on the same days. Multiple algorithms were successful relating spectral reflectance with GPP, including: spectral vegetation indices (SVI) sensitive to chlorophyll content, SVI used in a photosynthetic light-use efficiency model framework, spectral shape characteristics through spectral derivatives and absorption feature analysis, and statistical models leading to multiband hyperspectral indices from partial least squares regression. Successful algorithms were able to achieve R2 better than 0.7 using a diverse set of observations combining data from different sites from multiple years and at multiple times during the year. The demonstrated robustness of the algorithms provides some confidence in using DESIS imagery to map spatial patterns of GPP.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3