Abstract
Abstract. Aerosols are liquid or solid particles with diameters between 2.5 and 10 µm suspended in the lower layers of the atmosphere. Aerosol Optical Depth (AOD) is a relevant parameter that quantifies their concentration in the atmosphere. It is usually estimated from sun photometer measurements at specific wavelengths. The objective of this work is to implement a simple inversion algorithm to retrieve AOD at six different wavelengths (340, 380, 440, 500, 675 and 870 nm) using solar direct normal spectral irradiance ground measurements from a relatively low cost collimated spectroradiometer (EKO MS-711) at a low-altitude site in Montevideo, Uruguay. The results obtained are compared with AERONET products for the same site, including AOD and Angström coefficient. The results of AOD for all wavelengths show a consistent negative mean bias (MBD, unitless), between −0.005 and −0.015, and dispersion (RMSD, unitless) between 0.021 and 0.015 (to be compared to a mean reference AOD of 0.097). These metrics improve considerably for very clear days, MBD up to ± 0.001 and RMSD under 0.007 (to be compared to a mean reference AOD of 0.058). These results are considered to be a first step in implementing the methodology and acquiring local knowledge about AOD retrievals using relatively simple instrumentation.