ROAD INFRASTRUCTURE MAPPING BY USING IPHONE 14 PRO: AN ACCURACY ASSESSMENT

Author:

Suleymanoglu B.,Tamimi R.,Yilmaz Y.ORCID,Soycan M.,Toth C.

Abstract

Abstract. Vital aspects of transportation networks, such as the extraction of road information and analysis of road conditions, have become increasingly important research topics as they outline the foundation of many applications such as high-precision mapping, infrastructure planning and maintenance, intelligent transportation, or road design analysis. Therefore, regularly obtaining accurate high-density point cloud data of infrastructures supports many transportation-based applications and provides up-to-date information for smart cities or digital twins. Low-cost smartphone platforms equipped with a variety of sensors provide new and powerful data acquisition capabilities that can be exploited in the geospatial field. For example, mobile phones are now capable of collecting valuable data to generate accurate models to support digital reconstruction of infrastructures. These platforms can provide simple and effective data acquisition, while offering useful geospatial data that can be an alternative to traditional measurement techniques. However, the sensor performance with respect to spatial accuracy of point clouds generated in different applications have not yet been fully investigated. Thus, this paper evaluates the feasibility of using the point clouds generated by the built-in camera and LiDAR sensors integrated into iPhone 14 Pro for extracting road-related information. Additionally, the use of the viDoc RTK Rover on the iPhone 14 Pro increases the platform positioning accuracy, consequently improving the georeferencing accuracy of the point clouds. To validate the performance of the point clouds obtained by the iPhone 14 Pro, a reference dataset of the road features was obtained by measuring with a single-point RTK-GNSS receiver, receiving corrections from the Turkish CORS network (TUSAGA-Aktif) which provides two to three centimetres of accuracy. In addition, reference point cloud data over the same area was obtained from different platforms such as Mobile LiDAR and UAS, and the road features were extracted from these dataset and performance validated. The data acquired by the iPhone 14 Pro was processed and evaluated with respect to the reference datasets. The advantages and disadvantages of using iPhone 14 Pro are analysed in detail and the findings are reported.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3