MONITORING THE ENVIRONMENT IN SMART CITIES: THE IMPORTANCE OF GEOSPATIAL LOCATION REFERENCING

Author:

Suleymanoglu B.,Toth C.,Masiero A.,Ladai A.

Abstract

Abstract. The Smart City concept is taking momentum recently as big metropolises as well as mid-size cities are intensifying their efforts to improve the life of people living in dense urban environment. Local governments are eager to have up-to-date information of every aspect of city life, including environmental data, such as air and water quality parameters; mobility data, such as traffic flow, including vehicles, transit passengers; crowd control, such as public events, mobility in hospitals; life quality data, such as social status, education level, health records; etc. Monitoring all these very different data streams in space and time is a formidable challenge. While on the data acquisition side, tremendous progress has been achieved, as sensors have been deployed in increasingly large numbers on both mobile and static platforms, there is a lack of creating accurate geotags, as the quality of georeferencing varies over a large scale. It is important to note that the data acquisition is becoming largely customer-based, as smart devices are efficient sensor systems and with advancing communication technologies, crowdsourcing is quickly becoming the dominant data source on mobile platforms. In this paper, we investigate the potential to exploit the ranging capabilities of imaging and communication sensors and use the strength of the spatial network formed by the sensors to improve the georeferencing of a group of platforms operating in a close environment, such as UAS swarm or a platoon of autonomous vehicles. Transportation in cities and in general mobility are of great interest to Smart Cities, they represent one of the most significant components of the activities, so having an optimized transportation system is essential to reduce carbon footprint, decrease commute time, and just improve the quality of life. To assess the performance of collaborative navigation based accurate georeferencing, data was acquired at a simulated intersection area at The Ohio State University, where multiple vehicles, pedestrians and cyclists were moving around. In addition, drones were flying above the area. Here we report about our initial results.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3