RESEARCH ON NODE NETWORK TRANSMISSION CAPACITY PREDICTION MODEL FOR LARGE SCALE REMOTE SENSING DATA COLLECTION

Author:

Bai L.ORCID,Liu X.,Zhao M.,Wang Z.,Shi G.

Abstract

Abstract. In recent years, the use of remote sensing technology has grown exponentially in various industries such as agriculture, forestry, and urban planning. Remote sensing data collection systems rely on a network of nodes to collect and transmit data. The transmission capacity of these node networks is a critical factor in the performance and efficiency of the entire system. However, accurately predicting the transmission capacity of a node network can be a challenging task. To carry out large scale open remote sensing data collection, it is necessary to predict the network transmission capacity of nodes in the face of the difference in the execution speed of each node for various tasks. It is necessary to predict the network transmission capacity of nodes. In this research, we propose a node network transmission capacity prediction model for large scale remote sensing data collection using a combination of Particle Swarm Optimization (PSO) and Backpropagation (BP) algorithms. The proposed PSO-BP model aims to accurately predict the transmission capacity of a node network in a remote sensing data collection system. The model is tested and evaluated using a large-scale dataset and the results show that the proposed model outperforms existing models in terms of prediction accuracy. This work contributes to the field of remote sensing data collection by providing a reliable and efficient method for predicting the transmission capacity of node networks.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3