ENVIRONMENTAL SUSTAINABILITY ASSESSMENT OF A HIMALAYAN CATCHMENT WITH LAND COVER INDICES AND LST RELATIONSHIP USING PRINCIPAL COMPONENT ANALYSIS – A GEOSPATIAL APPROACH

Author:

Sathyaseelan M.ORCID,Ghosh S. K.,Ojha C. S. P.

Abstract

Abstract. Environmental sustainability assessment is a crucial part of the management of natural resources. Remote Sensing based environmental land cover indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Built-up Index (NDBI), Normalized Difference Moisture Index (NDMI), and its associated Land Surface Temperature (LST) are the major governing factors for the environmental processes that happen on the surface of the earth . These NDVI, NDWI, NDBI, NDMI, and LST are generated for 2020 using the Landsat satellite datasets. The process-based relationship among them is complex and involves various parameters but may be easily represented by multiple linear regression models. Principal Component Analysis (PCA) is one such type that efficiently handles and evaluates the contribution of each of these factors to each other based on the sampling units. The study area is the upper Ramganga catchment in the Indian Himalayas, consisting of 117 sub-catchments. These catchment units (samples) are entangled with these environmental factors. The results of the PCA reveal the relationship between each of the environmental factors and their priority. Based on the uncorrelated factors priority suggestion from the PCA, catchment units were classified as high, moderate, or low categories based on their dominance in the relationship among the factors. These spatial variations in the environmental factors can help to assess the sustainability of resources in the Himalayan catchment.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing the Remote Sensing Inputs for Hydrological Sustainability of a Himalayan Catchment;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3