GLCM FEATURES FOR LEARNING FLOODED VEGETATION FROM SENTINEL-1 AND SENTINEL-2 DATA

Author:

Tavus B.,Kocaman S.ORCID

Abstract

Abstract. Efforts on flood mapping from active and passive satellite Earth Observation sensors increased in the last decade especially due to the availability of free datasets from European Space Agency’s Sentinel-1 and Sentinel-2 platforms. Regular data acquisition scheme also allows observing areas prone to natural hazards with a small temporal interval (within a week). Thus, before and after datasets are often available for detecting surface changes caused by flooding. This study investigates the contribution of textural variables to the predictive performance of a data-driven machine learning algorithm for detecting the effects of a flooding caused by Sardoba Dam break in Uzbekistan. In addition to the spectral channels of Sentinel-2 and polarization bands of Sentinel-1, two spectral indices (normalized difference vegetation index and modified normalized difference water index), and textural features of gray-level co-occurrence matrix (GLCM) were used with the Random Forest. Due to high dimensionality of input variables, principal component (PC) analysis was applied to the GLCM features and only the most significant PCs were used for modeling. The feature stacks used for learning were derived from both pre- and post-event Sentinel-1 and Sentinel-2 images. The models were validated through model test measures and external reference data obtained from PlanetScope imagery. The results show that the GLCM features improve the classification of flooded areas (from 82% to 93%) and flooded vegetation (from 17% to 78%) expressed in user’s accuracy. As an outcome of the study, the use of textural features is recommended for accurate mapping of flooded areas and flooded vegetation.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3