USING AIRBORNE REMOTE SENSING TO INCREASE SITUATIONAL AWARENESS IN CIVIL PROTECTION AND HUMANITARIAN RELIEF – THE IMPORTANCE OF USER INVOLVEMENT
-
Published:2016-06-24
Issue:
Volume:XLI-B8
Page:1363-1370
-
ISSN:2194-9034
-
Container-title:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
-
language:en
-
Short-container-title:Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
Author:
Römer H.,Kiefl R.,Henkel F.,Wenxi C.,Nippold R.,Kurz F.,Kippnich U.
Abstract
Abstract. Enhancing situational awareness in real-time (RT) civil protection and emergency response scenarios requires the development of comprehensive monitoring concepts combining classical remote sensing disciplines with geospatial information science. In the VABENE++ project of the German Aerospace Center (DLR) monitoring tools are being developed by which innovative data acquisition approaches are combined with information extraction as well as the generation and dissemination of information products to a specific user. DLR’s 3K and 4k camera system which allow for a RT acquisition and pre-processing of high resolution aerial imagery are applied in two application examples conducted with end users: a civil protection exercise with humanitarian relief organisations and a large open-air music festival in cooperation with a festival organising company. This study discusses how airborne remote sensing can significantly contribute to both, situational assessment and awareness, focussing on the downstream processes required for extracting information from imagery and for visualising and disseminating imagery in combination with other geospatial information. Valuable user feedback and impetus for further developments has been obtained from both applications, referring to innovations in thematic image analysis (supporting festival site management) and product dissemination (editable web services). Thus, this study emphasises the important role of user involvement in application-related research, i.e. by aligning it closer to user’s requirements.
Publisher
Copernicus GmbH
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献