INDIVIDUAL TREE-BASED FOREST SPECIES DIVERSITY ESTIMATION USING UAV-BORNE HYPERSPECTRAL AND LIDAR DATA

Author:

Zheng Z.ORCID,Li X.,Xu C.,Zhao P.,Chen J.,Wu J.,Zhao X.,Mu X.,Zhao D.,Zeng Y.

Abstract

Abstract. Forest biodiversity is essential in maintaining ecosystem functions and services. Recently, unmanned aerial vehicle (UAV) remote sensing technology has emerged as a cost-effective and flexible tool for biodiversity monitoring. In this study, we compared the optimal clustering algorithm, classification method (spectral angle mapper, SAM), spectral diversity metric and structural heterogeneity index for forest species diversity estimation in two complex subtropical forests, Mazongling (MZL) and Gonggashan (GGS) National Nature Forest Reserves in China, using UAV-borne hyperspectral and LiDAR data. The results showed that the SAM classification method performed better with higher values of R2 than the clustering algorithm for predicting both species richness (MZL: 0.62 > 0.46 and GGS: 0.55 > 0.46) and Shannon-Wiener index (MZL: 0.64 > 0.58 and GGS: 0.52 > 0.47), while the optimal clustering algorithm had the highest prediction accuracy for the Simpson index, followed by the SAM classification method, spectral diversity metric and structural heterogeneity index (MZL: 0.83>0.44>0.31>0.12, GGS: 0.62>0.44>0.38>0.00). Our study indicated that the SAM classification method had the advantage of identifying rare species and estimating species richness, while the clustering method could capture forest diversity patterns rapidly without distinguishing the specific tree species and predict the Simpson index more accurately. Overall, both clustering and classification methods exhibited superior performance compared to spectral or structural diversity indices. Our findings highlight the applicability of UAV remote sensing in monitoring forest species diversity in complex subtropical forests.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3